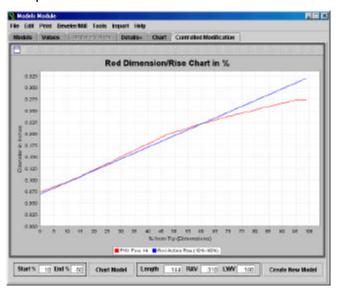
BUILDING A PHY PARA14 SPEY ROD

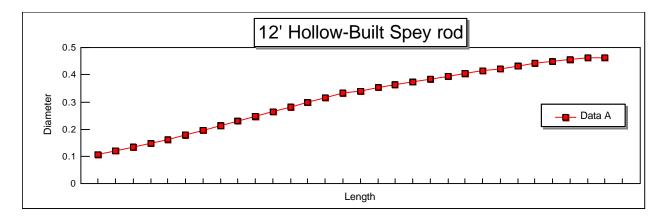

by Ron Grantham

Last April, at the 2004 Corbett Lake Bamboo Rod Builders' Gathering, Chris Bogart gave a visual presentation of a new computer application which he had skillfully designed around John Bokstrom's "Controlled Modification" program. Meanwhile, unbeknownst to either Bogart or Bokstrom, a California bamboophile and computer guru named Larry Tusoni was working on a comprehensive rod taper data bank, but which didn't have any modification capabilities. Tusoni, at Corbett Lake for the Gathering, mentioned to Bokstrom and Bogart that he'd like to incorporate the Controlled Modification program into his application. Heads nodded in agreement and within a month the prototype was up and running. After initial testing, the final version, known as *RodDNA – Rod Design & Analysis*, was ready for use.

I used *RodDNA* to create a 12-foot Spey rod taper from that of a 7-foot trout rod.

I'd already built a half-dozen double-handed bamboo rods which used either hand-made locking metal ferrules or spliced joints, and all were based on Garrison trout rods using the original Bokstrom Controlled Modification program. This time, however, I wanted a rod with a faster action, and I also wanted to try Tusoni's program.

After downloading *RodDNA* from <u>http://www.HighSierraRods.com</u> I clicked on the Modules \ Models page (I was a beta-version tester for Tusoni so I already knew my way around). As I scrolled through the four-hundred-plus rods available in the archives, I looked at the Stresses and Dimensions for each rod. Finally, I selected the PHY Para14 because it has the profile I wanted and because the modification would be an extreme example of the program's capabilities.


Nodels Values Committeering Det	ais Chart	Controlle	d Madification		
IDP Natae	Lengthinsh	Actingine to	ConstType	Line Weight	UteLetg
341 Philipson PowerPail	102	92	Hex	5	1
242 Philipsen Premium 3/2 91	109	82	Heat		
343 Philipsen Smugder	.92	62	Hex	6	
344 PHY-Para14	. 93	83	HEI.	6	
345 PHY11	112	102	Hate	4	
346 PHY8 2pc Set	64	74	Hex	a	
247 PHYEDat Rod	96	RS	Haz	G	
348 PHYEob Ditett	108	98	Hex:	9	
340 PHY Erightwater	90		Her	4	
350 PHY Origgs River	- 87	- 77	Haz		
361 PHYJU's Rod	04	74	Hex		
252 PHY Matha Mate TIP Swi 3	90	RD	Here .	a	
353 PHYNatha Nate T6" 6w1	90	80	Hex	6	
364 PHYMatheMarie	90		Hexi.	6	
355 PHYMoge817	15	65	Hate	4	
356 PHYPere 14	64		Hax		
257 PHYPera 15 20	20	R5	Hez	4	
358 PHY Para 15 7 4 wf	- 84	- 74	Hex	4	
259 PHY Pina 15 (6)	96	89	HEAL	6	
•					
PHY Para 14 710* Swt 2p			esses	Dimensi	
		1	Base Core Charl	IIII I	nder Chart

With the PHY Para 14 selected, a click on the "Controlled Modification" tab brought up the page which shows the Rod Dimension / Rise Chart in %. On the bottom of that page is a series of boxes; the ones I wanted were Length (in inches), RAV (Rod Action Value), and LWV (Line Weight Value). From my previous Spey rods, I knew roughly the factors that needed to be entered. I changed the Length to 144 inches, the RAV to .310 and the LWV to .100, then clicked on "Create New Model". Back in the Models page was a new entry: PHY Para14 [1]. A glance at the dimensions showed that my new rod was indeed 144 inches long and had a dimension for each 5-inch station. Some of the other information, such as line weight, was still based on the original 84-inch rod and I dismissed that part.

The Print \ Planing Report was selected, then saved to a .txt file and subsequently loaded into my Lotus 1-2-3 spreadsheet. The graph appears below.

I had already decided to hollow-build the rod and use my hand-made locking ferrules, so the slight extra weight of the metal ferrules was offset a bit by the hollowing of the bamboo.

The finished product is a 12-foot, 12½-ounce, double-handed fly rod which I built for summer-run steelhead in British Columbia. It would work quite nicely for Atlantic salmon, as well. Although a bit faster than the progressive Garrison tapers, the new rod casts an 8-weight line with ease and authority.

If you're interested in building the three-piece,12-foot PHY Para14 Spey rod without using *RodDNA*, here's the taper:

<u>Tip</u>		<u>Mid</u>		<u>Butt</u>	
0	0.1073	45	0.2480	95	0.3858
5	0.1202	50	0.2648	100	0.3961
10	0.1329	55	0.2820	105	0.4049
15	0.1464	60	0.2974	110	0.4140
20	0.1606	65	0.3167	115	0.4230
25	0.1791	70	0.3312	120	0.4325
30	0.1951	75	0.3411	125	0.4413
35	0.2127	80	0.3530	130	0.4499
40	0.2295	85	0.3641	135	0.4579
45	0.2480	90	0.3757	140	0.4615
50	0.2648	95	0.3858	144	0.4615
		100	0.3961		

For more information, email me at pisces45@shaw.ca